

Subaction B4.6 Options for reuse of inorganic waste

DeB4.6 Reuse options of inorganic waste sand in geo-construction

The report has been prepared by: Jean-Bernard Virolle, Project Manager Patrick Hairy, Proofreader Christine Colliard, Dissemination Manager 19.2.2022

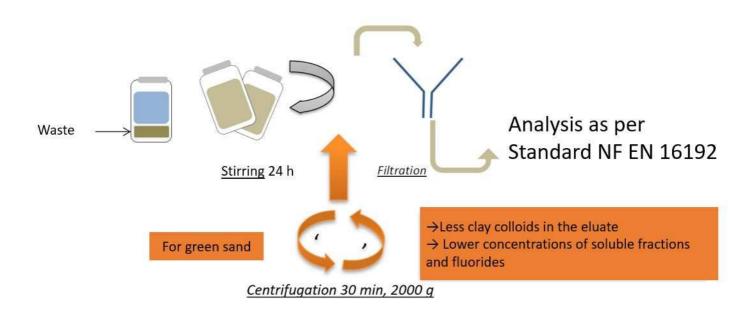
"The publication reflects only the Author's view and that the Agency/commission is not responsible for any use of that may be made of the information contains."

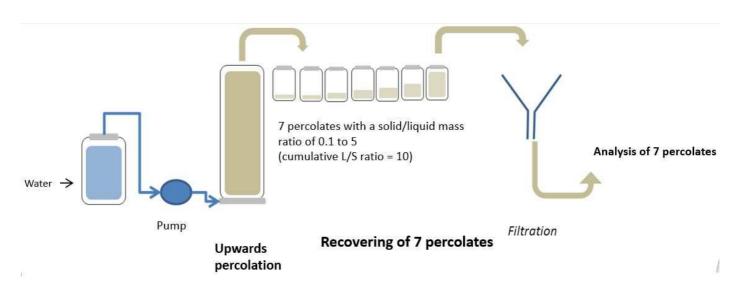
Content

1.	In	itroduction	3
2.	0	ptions for reuse of inorganic sand waste	4
	2.1.	Leaching tests performed on sand samples	4
	2.2.	Results of leaching tests on sand samples	6
	2.3.	Synthesis of results and identification of reuse options for inorganic sands	9
3.	C	onclusions	. 13

1. Introduction

Once the steel parts have been cast by the different partners of the Green Foundry Life project in order to compare the emissions generated in the foundry between organic and inorganic sand, CTIF carried out several works for phase B4.6 of the project, regarding options for reusing inorganic sand waste in geo-construction:


- Leaching tests on inorganic sand waste,
- Leaching tests on treated sands,
- A synthesis of the results obtained in relation to the reference documents of the different countries taking part into this project (Germany, Spain, Finland, France, Italy, Poland).


- 2. Options for reuse of inorganic sand waste
 - 2.1. Leaching tests performed on sand samples

Principle of the leaching test (level 1): reference to standard NF EN 12457-2

<u>Note</u>: Paragraph 5.2.2 provides that there may be filtration difficulties and refers to Appendix E for "fine-textured, humus-rich soil waste".

Principle of the percolation test (level 2): reference to standard NF EN 14405

<u>Note:</u> For green sand, use a specific procedure with calcium chloride (CaCl2) to deactivate the clay and flocculate it.

Limitations related to the leaching test (see the documents submitted by the partners in the appendice)

The table below was produced using the reference documents submitted by the project partners (see documents in the appendice).

Table 8 : Assessment of limit values related to the leaching test (for acceptance of inert waste	
centres).	

Country	Germany	Spain	Filand	France	Italy	Poland
Reference document		Decree of 01.12.2015	Decree 843/2017	Decree of 12.12.2014	Decree of 02.05.1998	WAS Pollut 2016 TC
Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/litre	Limit values mg/kg
As		0,5	0,5	0,5	0,05	0,5
Ba			20	20	1	20
Cd		0,04	0,04	0,04	0,005	0,04
Cr		0,5	0,5	0,5	0,05	0,5
Cu		2	2	2	0,05	2
Hg		0,01	0,01	0,01	0,001	0,01
Mo		0,5	0,5	0,5		0,5
Ni		0,4	0,4	0,4	0,01	0,4
Pb			0,5	0,5	0,05	0,5
Sb		0,06	0,3	0,06		0,06
Se		0,1	0,4	0,1	0,01	0,1
Zn		4	4	4	3	4
Chloride		800	800	800	100	800
Fluoride		10	10	10	1,5	10
Sulphate		6000	1200	1000	250	1000
Phenolic compounds		1	5	1		1
DOC / eluate		500	500	500	30	500
Soluble fraction				4000		4000
DOC / raw				30000		30000
BTEX (sum)		< 6		6		6
TEX (sum)			25			
enzene (LOQ 0,01 et 0,05 mg/kg dm)			0,02			
PCB-7 (sum)			1	1		1
Petroleum hydrocarbons C10-C40			300	500		500
Sum 16 EPA-PAH, excl. LOQ			30	50		1
Nitrates					50	
Cyanides					0,05	
Ве					0,01	
Со					0,25	
٧			2		0,25	
Asbestos					30	
ASUESIUS						

mg/l x (Volume of solution tested / mass of sand in solution) = mg/kgMS

mg/l x K = mg/kgMS (with K being a function of the leaching ratio L/S which in this case is = 10/2.65).

2.2. Results of leaching tests on sand samples

As announced in the introduction to this report, leaching tests were carried out on 12 sand samples:

- Four samples of inorganic sand to be treated (CTIF IE, GEOPOL W37-20, INOTEC and PEAK W37),

Four samples of treated inorganic sand, with the lowest results obtained after characterisation (batches from the mechanical treatment process: see paragraphs 2.2, 2.3 and 2.4 of the report DeB4.5 Feasibility studies of the reuse of inorganic surplus foundry sand in core making and geo-construction),

- Four treated inorganic sand samples with the highest results after characterisation (batches from the hydromechanical treatment process: see paragraphs 2.2, 2.3 and 2.4 of the report DeB4.5 Feasibility studies of the reuse of inorganic surplus foundry sand in core making and geo-construction).

PRJ1700885 Green Foundry Life	Exceeding the lim	it values for Italy		
MAJ du 14.01.2022	Limit values exceed	ed for all countries		
Naphthalene	< 0,01	< 0,01	< 0,01	< 0,01
asbestos				
V				
Со				
Be				
Cyanides				
Nitrates				
Sum 16 EPA-PAH, excl. LOQ	< 0,16	< 0,16	< 0,16	0,20
Petroleum hydrocarbons C10-C40	< 20	< 20	< 20	< 20
PCB-7 (sum)	< 0,007	< 0,007	< 0,007	< 0,007
Benzene (LOQ 0,01 et 0,05 mg/kg dm)	< 0,02	< 0,02	< 0,02	< 0,02
TEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
BTEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
DOT (on raw)	< 2000	< 2000	< 2000	< 2000
Soluble fraction	7000	4930	4160	3080
DOC (on eluate)	770	40	810	300
Phenolic compounds	0,23	< 0,10	< 0,10	< 0,10
Sulphate	< 10	76	13	20
Fluoride	< 2	8,9	76	110
Chloride	< 10	< 10	< 10	23
Zn	< 0,10	0,30	< 0,10	< 0,10
Se	< 0,02	< 0,02	< 0,02	< 0,02
Sb	< 0,02	0,067	< 0,02	< 0,02
Pb	< 0,02	< 0,02	0,02	< 0,02
Ni	< 0,03	< 0,03	< 0,03	< 0,03
Mo	< 0,02	0,03	< 0,02	< 0,02
Hg	< 0,0005	< 0,0005	< 0,0005	< 0,0005
Cu	< 0,02	0,05	0,04	0,02
Cr	< 0,01	0,07	0,03	0,01
Cd	< 0,002	< 0,002	< 0,002	< 0,002
Ba	< 0,05	0.07	< 0,05	< 0,05
As	0.01	0,11	0,03	0,02
Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS
Treatment	No	No	No	No
Waste sand samples	Waste sand CTIF IE	Waste sand INOTEC	Waste sand GEOPOL W37-20	Waste sand PEAK W37

Table 9: results of leaching tests carried out on the sands to be treated

<u>Observation</u>: The above results show that all inorganic sand samples are not acceptable for landfill for all countries.

Results of leaching tests on sand samples: cont'd

-			•	
Waste sand samples	Waste sand CTIF IE	Waste sand INOTEC	Waste sand GEOPOL W37-20	Waste sand PEAK W37
Treatment	Mechanical	Mechanical	Mechanical	Mechanical
Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS
As	0,02	0,09	0,03	0,03
Ba	< 0,05	< 0,05	< 0,05	< 0,05
Cd	< 0,002	< 0,002	< 0,002	0,002
Cr	0,20	0,28	0,09	0,10
Cu	0,02	0,02	< 0,02	< 0,02
Hg	< 0,0005	< 0,0005	< 0,0005	< 0,0005
Mo	< 0,02	0,04	< 0,02	0,02
Ni	< 0,03	< 0,03	< 0,03	0,05
Pb	< 0,02	< 0,02	< 0,02	< 0,02
Sb	< 0,02	< 0,02	< 0,02	< 0,02
Se	< 0,02	< 0,02	< 0,02	< 0,02
Zn	< 0,10	< 0,10	< 0,10	< 0,10
Chloride	< 10	< 10	11	14
Fluoride	< 2	14	85	99
Sulphate	< 10	68	14	20
Phenolic compounds	0,20	0,56	0,32	0,19
DOC (on eluate)	590	45	700	240
Soluble fraction	6830	2940	3830	2710
DOT (on raw)	< 2000	< 2000	< 2000	< 2000
BTEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
TEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
Benzene (LOQ 0,01 et 0,05 mg/kg dm)	< 0,02	< 0,02	< 0,02	< 0,02
PCB-7 (sum)	< 0,007	< 0,007	< 0,007	< 0,007
Petroleum hydrocarbons C10-C40	< 20	< 20	< 20	< 20
Sum 16 EPA-PAH, excl. LOQ	< 0,16	< 0,16	< 0,16	< 0,16
Nitrates				
Cyanides				
Be				
Co				
V				
asbestos				
Naphthalene	< 0,01	< 0,01	< 0,01	< 0,01
MAJ du 11.01.2022	Limit values exceed	led for all countries		
PRJ1700885 Green Foundry Life	Exceeding the lim	it values for Italy		

Table 10: results of leaching tests carried out on mechanically treated sands

Observation: The above results show that not all inorganic sand samples are acceptable for landfill.

Mechanical treatment of inorganic sands is therefore not effective in this case.

Results of leaching tests on sand samples: cont'd

		-		~
Waste sand samples	Waste sand CTIF IE	Waste sand INOTEC	Waste sand GEOPOL W37-20	Waste sand PEAK W37
Treatment	Hydromechanical	Hydromechanical	Hydromechanical	Hydromechanical
Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS
As	< 0,01	0,02	< 0,01	< 0,01
Ba	< 0,05	< 0,05	< 0,05	< 0,05
Cd	< 0,002	< 0,002	0,003	< 0,002
Cr	0,03	0,04	0,10	0,08
Cu	0,02	< 0,02	0,02	< 0,02
Hg	< 0,0005	< 0,0005	< 0,0005	< 0,0005
Mo	< 0,02	< 0,02	< 0,02	< 0,02
Ni	< 0,03	< 0,03	< 0,03	< 0,03
Pb	< 0,02	< 0,02	< 0,02	< 0,02
Sb	< 0,02	< 0,02	< 0,02	< 0,02
Se	< 0,02	< 0,02	< 0,02	< 0,02
Zn	< 0,10	< 0,10	< 0,10	< 0,10
Chloride	< 10	< 10	< 10	< 10
Fluoride	< 2	2,3	4,1	7,1
Sulphate	< 10	< 10	< 10	< 10
Phenolic compounds	0,19	0,46	1,10	0,10
DOC (on eluate)	28	34	36	29
Soluble fraction	561	1100	< 500	< 500
DOT (on raw)	< 2000	< 2000	< 2000	< 2000
BTEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
TEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
Benzene (LOQ 0,01 et 0,05 mg/kg dm)	< 0,02	< 0,02	< 0,02	< 0,02
PCB-7 (sum)	< 0,007	< 0,007	< 0,007	< 0,007
Petroleum hydrocarbons C10-C40	< 20	< 20	< 20	< 20
Sum 16 EPA-PAH, excl. LOQ	< 0,16	< 0,16	< 0,16	< 0,16
Nitrates				
Cyanides				
Be				
Co				
v				
asbestos				
Naphthalene	< 0,01	< 0,01	< 0,01	< 0,01
IAJ du 11.01.2022	Limit values exceed	led for all countries		
RJ1700885 Green Foundry Life	Exceeding the lim	nit values for Italy		

Table 11: results of leaching tests carried out on hydromechanically treated sands

Observation: the above results show that three of the inorganic sand samples would be acceptable in an inert waste landfill for all countries, except for Italy, where the limit values applied are lower (two sands would be accepted instead of three).

- A measured value for fluoride is exceeded for Italy (limit value = 5.7 mg/kgMS),

- A measured value for phenol index is exceeded for all countries (limit value = 1 mg/kgMS).

The hydromechanical treatment of inorganic sands is particularly effective in this case.

The two exceeded values are relatively low, which suggests that all sands could be accepted by optimising this treatment process.

2.3. Synthesis of results and identification of reuse options for inorganic sands

Summary of leaching results

The results obtained during the leaching tests show that the hydromechanically treated inorganic sands INOTEC and CTIF IE are acceptable in landfills in all the partner countries of the project.

Concerning the hydromechanically treated inorganic sand GEOPOL W37-20, the acceptable limit value of the phenol index is slightly exceeded (1.10 mg/kgMS for 1 mg/kgMS max), therefore this sand is not acceptable in landfill in all project partner countries.

The hydromechanically treated inorganic sand PEAK W37 is not acceptable in landfills, only in Italy, because of a slightly exceeded fluoride content (7.1 mg/kgMS for 5.7 mg/kgMS maximum).

If the optimisation of the treatment of inorganic sands GEOPOL W37-20 and PEAK W37 in hydromechanics was not feasible to improve these results, reuse options are however possible.

For all other inorganic sands (to be treated and mechanically treated), these are not acceptable for landfill in all project partner countries, with several limit values largely exceeded (fluoride, TOC/Eluate and soluble fraction).

However, there are options for reuse of these sands.

Identification of reuse options for inorganic sands

According to the documents provided by the project partners, there are several options for the reuse of foundry sands.

For Finland, the seven pathways presented in the "Governmental Decree 843/2017" for a reuse of sands in geo-construction are the following (see the extract from the reference document in the appendice):

- Roadway, covered
- Roadway, paved
- Field covered
- Field paved
- Embankment
- Floor structure of industrial or storage building
- Road constructed of crushed stone and ash

Identifying options for reusing inorganic sands: cont'd

Finland	Reuse options in geo-contruction								
Channels	Roadway covered ¹⁾	Roadway paved ¹⁾	Field covered ¹⁾	Field paved ¹⁾	Embankment	loor structure of industrial or storage buildi	Crushed stones and ash ²		
Setting					Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS		
As	1	2	0,5	1,5	0,5	2	2		
Ba	40 à 80*	100	20	60	20	100	80		
Cd	0,04	0,06	0,04	0,06	0,04	0,06	0,06		
Cr	2,00	10	0,5	5	1	10	5		
Cu	10	10	2	10	10	10	10		
Hg	0,03	0,03	0,01	0,03	0,03	0,03	0,03		
Мо	1,5	6	0,5	6	1	6	2		
Ni	2	2	0,4	1,2	1,2	2	2		
Pb	0,5	2	0,5	2	0,5	2	1		
Sb	0,7	0,7	0,3 à 0,4*	0,7	0,7	0,7	0,7		
Se	1	1	0,4	1	1	1	1		
Zn	15	15	4	12	15	15	15		
Chloride (CI-) ³⁾	3200 à 3600*	11000 à 14000*	800	2400	1800	11000	4700		
Fluoride (F-) ³⁾	50	150	10	50	30	150	100		
Sulphate (SO ₄ ⁻²) ³⁾	5900 à 6000*	18000 à 20000*	1200	10000	3400	18000	6500		
Phenolic compounds ⁶⁾	10	10	5	10	10	10	10		
Soluble fraction									
DOC / Eluate	500	500	500	500	500	500	500		
DOC / raw									
Σ BTEX									
Σ TEX ⁴⁾	25	25	25	25	25	10	25		
Benzene (LOQ 0,01 et 0,05 mg/kg dm)	0,2	0,2	0,02	0,2	0,06	0,02	0,2		
PCB-7 compounds ⁷⁾	1	1	1	1	1	1	1		
Petroleum hydrocarbons C10-C40	500	500	500	500	500	500	500		
PAH compounds ⁵⁾	30	30	30	30	30	30	30		
Nitrates									
Cyanides									
Be									
Co V	2 à 3*	3	2	3	2	3	3		
Asbestos	203	5	2	5	2	3	5		
Naphthalene	5	5	5	5	5	5	5		
MAJ du 11.01.2022	2	2	2	2	2		2		
PRJ1700885 Green Foundry Life									
*Exceptions to the limit values, if the maximum	imum thickness of the exe	cuted structure is 0,5 m (mg	g/kg L/S 10 I/kg)						
Roadway covered : Ba=80, V=3, Cloride (Cl)=3600. sulphate(SO4 ²)=60	000							
Roadway paved : Cloride (Cl')=14000, sulph	Idle(504)=20000								
Field covered : Sb=0,4									
1) The maximum amount of recovered a									
2) The layer thickness of a road constru	ucted of crushed stone a	nd ash is set at the calcu	lated thickness of the fi	ller layer					
3) The limit values set for chloride, sul	phate and fluoride in Ta	able 1 do not apply to a st	tructure that meets all th	e following requiremen	ts: situated at a distance	no greater than 500 m from the sea; the directi	on of discharge of water		
draining through the structure is into the	he sea; and there are no	wells used for domestic	water intake between t	he structure and the sea					
4) Toluene, ethylbenzene and xylene (d									
		haphthylene_bentz(a)ant	hracene, benzo(a) hvren	benzo(b)fluoranthene	benzo(g h i)pervlene be	nzo(k)fluoranthene, dibenzo(a,h)anthracene, p	henanthrene, fluoranthene		
fluorene, indeno(1,2,3-cd)pyrene, chrys				, sense a moranene,	, a cruce (e) in the product of	naetalina ana ana ana ana ana ana ana ana ana	in a name in a name in a station of the p		
			NJ						
6) Phenol, o-cresol, m-cresol, p-cresol a									
7) Polychlorinated biphenyl congeners	20, 52, 101, 118, 158, 153	and 180 (cumulative cont	eny						

Identifying options for reusing inorganic sands: cont'd

For France, the three channels presented in the CEREMA guide "Environmental acceptability of alternative materials in road techniques - Foundry sands", in the case of reuse of sands as alternative materials in road techniques are the following:

- Usage of type 1 : see guide CEREMA on web site <u>www.cerema.fr</u>,
- Usage of type 2 : see guide CEREMA,
- Usage of type 3 : see guide CEREMA,

Table 13: Limit values to be respected for the reuse of sand in road technology

France		Reuse options in road ingeneering	
Channels	Alternative material for type 1 use	Alternative material for type 2 use	Alternative material for type 3 use
Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS
As	0,6	0,6	0,6
Ba	25	25	25
Cd	0,05	0,05	0,05
Cr	0,8	0,6	0,6
Cu	3	3	3
Hg	0,01	0,01	0,01
Mo	0,6	0,6	0,6
Ni	4	2	0,5
Pb	0,6	0,6	0,6
Sb	0,7	0,4	0,08
Se	0,1	0,1	0,1
Zn	20	20	5
Chloride (Cl-)	1000	1000	1000**
Fluoride (F-)	60	30	13
Sulphate (SO4 ²)	10000	5000	1300**
Phenolic compounds	2	2	1
Soluble fraction			5000**
DOC / Eluate	500	500	500
DOC / raw	30000 / 60000*	30000 / 60000*	30000 / 60000*
Σ ΒΤΕΧ	6	6	6
Σ ΤΕΧ			
Benzene (LOQ 0,01 et 0,05 mg/kg dm)			
PCB-7 compounds	1	1	1
Petroleum hydrocarbons C10-C40	500	500	500
PAH compounds	50	50	50
Nitrates			
Cyanides			
Be			
Со			
V			
Asbestos			
Naphthalene			
MAJ du 11.01.2022	*A limit value of 60000 mg/kgDM c	an be accepted, if the TOC/eluate v	alue does not exceed 500 mg/kgDN

Identifying options for reusing inorganic sands: cont'd

Based on the values measured during the leaching tests carried out on the inorganic sands, CTIF IE, INOTEC, GEOPOL W37-20 and PEAK W37, and taking into account the limit values provided by the project partners, the table below summarises all the possible reuse options for all the samples tested.

Table 14: Possible reuse options for inorganic sands tested during the project										
	-	-	-	-		-			•	
Process	Options	Accepted in center	Use of the material in geo-contruction (document from Finlande)							
	Samples tested	waste inert	Roadway covered ¹⁾	Roadway paved ¹⁾	Field covered ¹⁾	Field paved ¹⁾	Embankment	Floor structure of industrial or storage building	gCrushed stones and ash ²	
1	INOTEC	M.	Ú.,	V	V	Ú.,	V	V	V	

Process	Uptions	Accepted in center	Use of the material in geo-contruction (document from Finlande)						
	Samples tested	waste inert	Roadway covered ¹⁾	Roadway paved ¹⁾	Field covered ¹⁾	Field paved ¹⁾	Embankment	Floor structure of industrial or storage building	Crushed stones and ash ²
	INOTEC	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Untreated sands	CTIF IE	No	No	No	No	No	No	No	No
	GEOPOL W37-20	No	No	No	No	No	No	No	No
	PEAK W37	No	No	Yes	No	No	No	Yes	No
	INOTEC	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mechanical processing	CTIFIE	No	No	No	No	No	No	No	No
	GEOPOL W37-20	No	No	No	No	No	No	No	No
	PEAK W37	No	No	Yes	No	No	No	Yes	No
	INOTEC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hydro mechanical processing	CTIFIE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	GEOPOL W37-20	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	PEAK W37	Yes except in Italie	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MAJ du 12.01.2022									

Process	Options	Accepted in center	Use of the material in road ingeneering (2019 Cerema guide France)					
	Samples tested	waste inert	Alternative material for type 1 use	Alternative material for type 2 use	Alternative material for type 3 use			
	NOTEC	No	Yes	Yes	Yes			
Untreated sands	CTIFIE	No	Yes	Yes	Yes			
	GEOPOL W37-20	No	No	No	No			
	PEAK W37	No	No	No	No			
	INOTEC	No	Yes	Yes	No			
Mechanical processing	CTIFIE	No	Yes	Yes	Yes			
	GEOPOL W37-20	No	No	No	No			
	PEAK W37	No	No	No	No			
	INOTEC	Yes	Yes	Yes	Yes			
Hydro mechanical processing	CTIFIE	Yes	Yes	Yes	Yes			
	GEOPOL W37-20	No	Yes	Yes	No			
	PEAK W37	Yes except in Italie	Yes	Yes	Yes			
MAJ du 12.01.2022								

3. Conclusions

<u>The laboratory work</u> carried out during this project made it possible to verify the impact of an inorganic sand on the quality of small steel castings.

It was found that the condition of the casting and finishing surfaces of the parts complied with the NF1370 standard according to BNIF technical recommendation no. 359 (Bureau de Normalisation des Industries de la Fonderie).

The contents of carbon, sulphur, nitrogen, hydrogen and oxygen measured on the part samples did not reveal any major problem.

The structural investigations carried out on the samples taken from the parts also confirmed that inorganic sand would apparently not have a major impact on the occurrence of defects (for the small steel parts tested in this project).

<u>Treatment trials carried out on inorganic sand waste</u> have shown that hydromechanical and ultrasonic technologies are particularly effective in obtaining an inert sand waste after treatment, or in allowing the treated sand to be reused in foundry, geo-construction or road engineering.

Nevertheless, these hydromechanical and ultrasonic treatment processes need to be tested on an industrial scale to verify whether these emerging technologies would be viable, compared to solutions using conventional technologies (mechanical, thermal, thermomechanical).

In this context, it would be interesting to develop a pilot capable of treating 250 kg of sand per cycle to check the feasibility and determine the consumption ratios, the production/maintenance ratios and the sand treatment costs in ℓ , and to compare the results obtained with those of conventional installations.

The study of this (these) industrial pilot(s) would also enable a representative life cycle analysis and carbon impact calculation to be carried out, to find out whether the hydromechanical and ultrasonic technologies can be transferred to industry for the treatment of used foundry sand.