

B4.3 Cleaning by Washing Method

••

..

"The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained."

Index:

- 1. Objectives
- 2. Methods and Equipment
- 3. Results
- 4. Conclusions

.

Laboratory scale work

Objective: Using **basic materials** such as **distilled water**, and later, **chemical solvent**, contaminated foundry sand was put through a series of **washing processes** in an attempt to render it suitable for **reuse** as foundry sand.

.

MATERIALS

- 1. Distilled water
- 2. 5M HCl

EQUIPMENT

- 1. Mufla furnace T^a max 230°C
- 2. pH flask
- 3. Filter paper of $0.45 \mu m$
- 4. Precipitate glass of 2 litres
- 5. Magnetic mixer (300 rpm)
- 6. Büchner funnels of 2 litres
- 7. Erlenmeyer flasks of 2 litres
- 8. Vacuum filtration system

In all, approx. 100 kilos of sand were washed. The sand tests started at 30 up to 450 grams.

- 1. Sand and ambient temperature distilled water were mixed in a flask at a ratio of 1:2. This was agitated by hand and pH was taken. 2HCl+Fe->FeCl₂+H₂
- 2. The mixture was then filtered to recover the sand and the process repeated until a decrease in pH to 9.35 was observed i.e. as near-neutral as practical.

pH test

Büchner funnels equipment

- 3. The washed sand was then mixed in a flask of HCl at a ratio of 1:5
- 4. The flask was placed in a magnetic agitator for 8 hours at 300 rpm.

Filtering the sand

- 5. This mixture was filtered and the sand was washed with distilled water one more time.
- 6. The samples were furnace-dried for 30 minutes at 105°C.

•••

Total metal (mg/kg)	Before washing	After washing	Washing efficiency
Barium (Ba)	7.85	4.55	42
Chromium (Cr)	335.00	163.00	51
Iron (Fe)	15,800.00	13,400.00	15
Molybdenum (Mo)	3.24	<2.00	38
Nickel (Ni)	718.00	640.00	11
Zinc (Zn)	13.20	10.50	20

. .

Hazardous elements (mg/kg)	Before washing	After washing	Washing efficiency
Fluorides	7.80	<5.00	36
Phenol	0.80	<0.50	38
DOC	480.00	169.00	65
TOC	8,900.00	<1,000.00	89
BTEX	0.22	<0.04	100

. : : . •

8

.

- 1. The chemical washing process explained here reduced residual metals from tested waste foundry sand.
- 2. The basic materials were effective and could be reused.
- 3. Different sample sizes gave similar washing efficiency results.
- 4. The washed sand was fit for use in cores.

••

Thank you

patricia.caballero@tecnalia.com

"The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained."

.