Work carried out by CTIF for treatment tests :

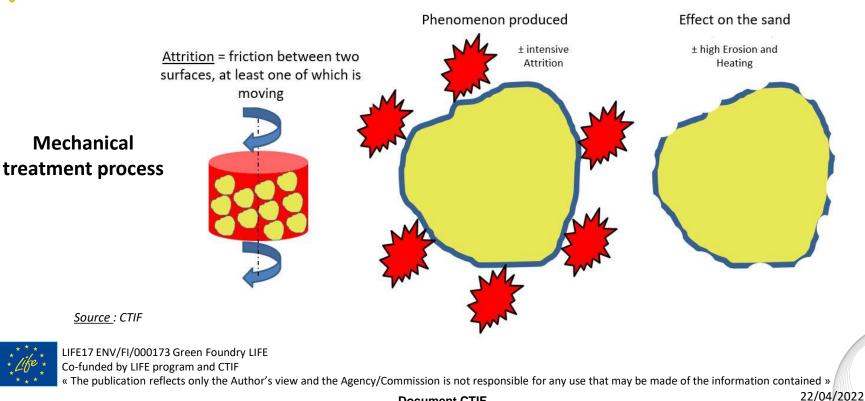
- Mechanical treatment trials,
- Hydromechanical treatment trials,
- Ultrasonic treatment trials,

 Characterizations of sand samples carried out before and after treatment, to observe the impact of different technologies on inorganic sands and to choose the batches of sand to be submitted to leaching tests for identifying reuse options (sands before treatment, sands the least well cleaned and the best cleaned sands).

0

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF « The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

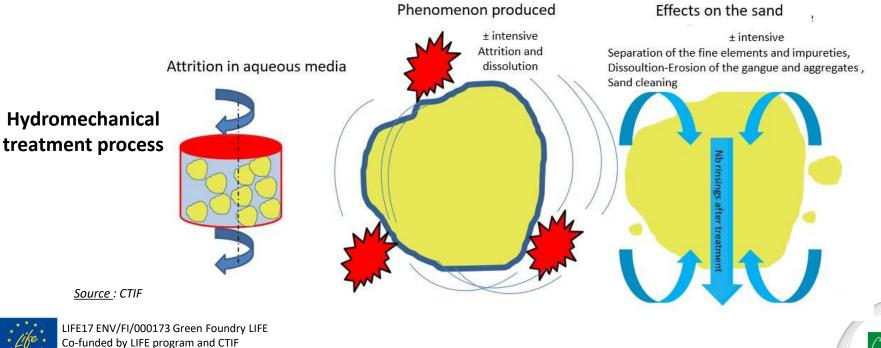
Differents waste sands inorganic :



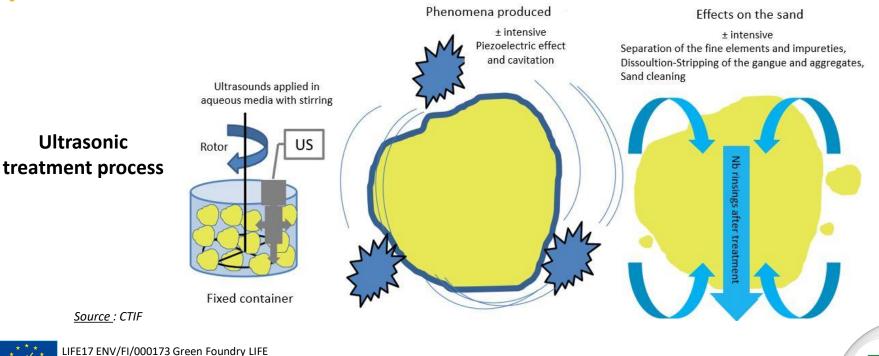
0

LIFE17 ENV/FI/000173 Co-funded by LIFE pro « The publication refle

til


Comparison of mechanical/hydromechanical/ultrasonic technologies and identification of the most effective process for cleaning inorganic sand :

Document CTIF


<u>Comparison of mechanical/hydromechanical/ultrasonic technologies and identification</u> of the most effective process for cleaning inorganic sand :

nined »

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained » Document CTIF

<u>Comparison of mechanical/hydromechanical/ultrasonic technologies and identification</u> of the most effective process for cleaning inorganic sand :

Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

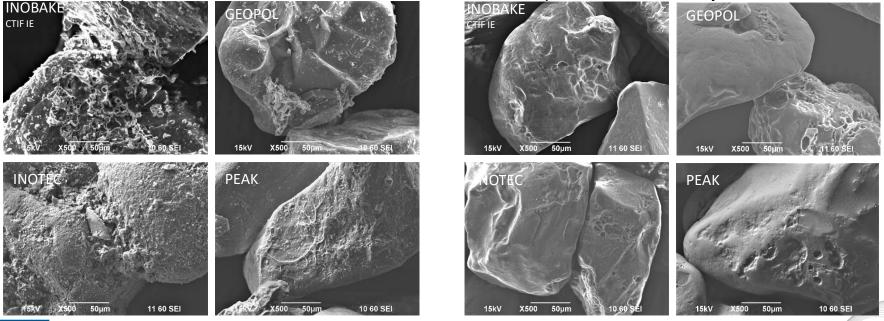
Document CTIF

Comparison of mechanical/hydromechanical/ultrasonic technologies and identification of the most effective process for cleaning inorganic sand : Same treatment time for all technologies

Results SEM expertise : sands after mechanical treatment INOBAKE INOBAKE-GEOPOI GEOPOL CTIF IE 50um PEAK PEAK X 500 50um 11 60 SE 10 60 SE 11 60 SE

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

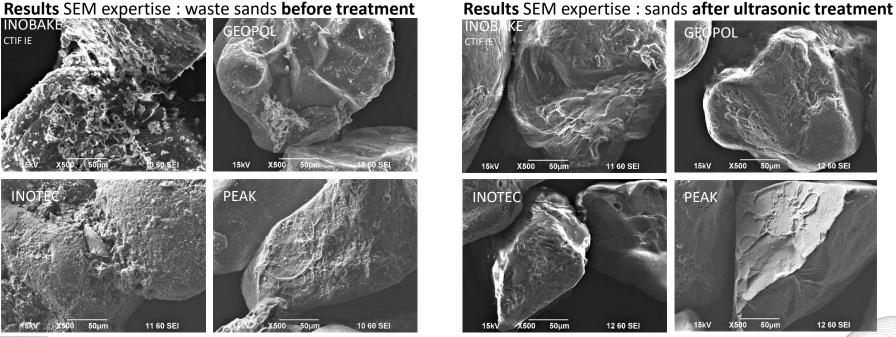


Document CTIF

Results SEM expertise : waste sands before treatment

<u>Comparison of mechanical/hydromechanical/ultrasonic technologies and identification</u> of the most effective process for cleaning inorganic sand : <u>Same treatment time for all technologies</u>

Results SEM expertise : waste sands before treatment Results SEM expertise : sands after hydromechanical treatment



LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

<u>Comparison of mechanical/hydromechanical/ultrasonic technologies and identification</u> of the most effective process for cleaning inorganic sand : <u>Same treatment time for all technologies</u>

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

<u>Core strength test and service life</u> : comparison between the best cleaned treated sand (hydromechanical) and new reference sand (BE01)

Sand preparation: 2.5% resin + 0.30% hardener

Equipment and tools used to produce cores (standardized test pieces)

<u>Source</u> : CTIF

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

<u>Core strength test and service life</u> : comparison between the best cleaned treated sand (hydromechanical) and new reference sand (BE01)

Test pieces removing

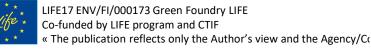
Measurement of flexural strength of test pieces

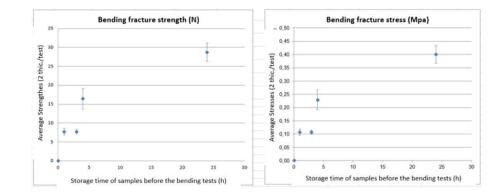
Source : CTIF

0

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

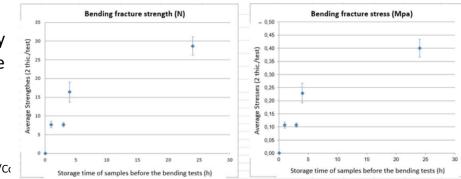
« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »




<u>Results :</u>

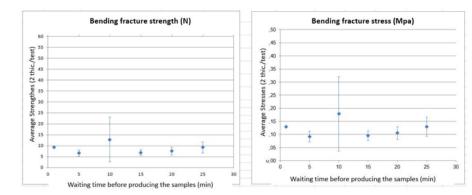
The strength of the cores made with the hydromechanically treated "INOBAKE" sand and the service life of the prepared sand are similar to those obtained with the new reference sand BE01.

Conclusion :


This confirms that the hydromechanical treatment of inorganic sand waste is particularly effective for the reuse of treated sand in moulding or core making (and certainly in ultrasonic because the analyses results were equivalent).

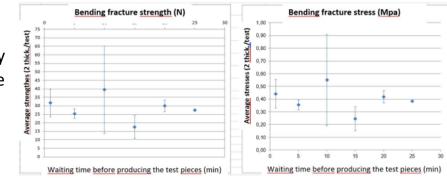
With 100% of new sand BE01 : bending fracture stress = 0.400 Mpa

With 100% of CTIF IE sand hydromechanically treated: bending fracture stress = 0.405 Mpa


With 100% of new sand BE01 : life of the prepared sand

<u>Results :</u>

The strength of the cores made with the hydromechanically treated "INOBAKE" sand and the service life of the prepared sand are similar to those obtained with the new reference sand BE01.


Conclusion :

This confirms that the hydromechanical treatment of inorganic sand waste is particularly effective for the reuse of treated sand in moulding or core making (and certainly in ultrasonic because the analyses results were equivalent).

Comment: at T=30mn, hardening of the prepared sand and plugging of the machine's shooting head (unfilled test pieces)

With 100% hydromechanically treated CTIF IE sand: life of the prepared sand

Comment: at T=30mn, hardening of the prepared sand and plugging of the machine's shooting head (unfilled test pieces)

0

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF « The publication reflects only the Author's view and the Agency/C

Means and resources used by CTIF :

Mechanical pre-treatment of waste sand

Mechanical treatment

Hydromechanical Ultrasonic treatment

Drying and dusting

INOTEC US

Optical microscope and SEM expertise

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

Sands characterization

Work carried out by CTIF :

- Leaching tests on inorganic sands waste,
- Leaching tests on treated inorganic sands (the least well and the best cleaned),
- Tables summarizing the results obtained in relation to the reference documents transmitted by the project partners (Spain, Finland, France, Italy, Poland).

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF « The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

Summary table of documents submitted by partners :

Acceptance limit values in inert waste storage center (all countries)

<u>Source</u> : CTIF

0

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

						1
Country	Germany	Spain	Filand	France	Italy	Poland
Reference document		Decree of 01.12.2015			Decree of 02.05.1998	
Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/litre	Limit values mg/kgN
As		0,5	0,5	0,5	0,05	0,5
Ba			20	20	1	20
Cd		0,04	0,04	0,04	0,005	0,04
Cr		0,5	0,5	0,5	0,05	0,5
Cu		2	2	2	0,05	2
Hg		0,01	0,01	0,01	0,001	0,01
Mo		0,5	0,5	0,5		0,5
Ni		0,4	0,4	0,4	0,01	0,4
Pb			0,5	0,5	0,05	0,5
Sb		0,06	0,3	0,06		0,06
Se		0,1	0,4	0,1	0,01	0,1
Zn		4	4	4	3	4
Chloride		800	800	800	100	800
Fluoride		10	10	10	1,5	10
Sulphate		6000	1200	1000	250	1000
Phenolic compounds		1	5	1		1
DOC / eluate		500	500	500	30	500
Soluble fraction				4000		4000
DOC / raw				30000		30000
BTEX (sum)		< 6		6		6
TEX (sum)			25			
Benzene (LOQ 0,01 et 0,05 mg/kg dm)			0,02			
PCB-7 (sum)			1	1		1
Petroleum hydrocarbons C10-C40			300	500		500
Sum 16 EPA-PAH, excl. LOQ			30	50		1
Nitrates					50	
Cyanides					0,05	
Be					0,01	
Co					0,25	
V			2		0,25	
Asbestos					30	
Naphthalene			5			
Water Air Soil Pollut (2016 : 227) - T						

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

Leaching tests and identifying reuse options Summary table of documents submitted by partners :

Acceptance limit values for sand reuse in geo-construction (Finland)

		PAH compounds ⁵⁾	30	30
		Nitrates		
	Co-funded by LIFE program and C	Cyanides		
		Be		
* *	LIEE17 ENIV/EL/000172 Groop Found	Со		
iko.*.		V	2 à 3*	3
	, , ,	haucatua		
* *	« The publication reflects only the A	Naphthalene	5	5
		MAJ du 11.01.2022		
		DD11700995 Creen Founday Life		

Finland				Reuse options i	n geo-contruction		
Channels	Roadway covered ¹⁾	Roadway paved ¹⁾	Field covered ¹⁾	Field paved ¹⁾	Embankment	loor structure of industrial or storage buildin	Crushed stones and ash ²
Setting			Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS
As	1	2	0,5	1,5	0,5	2	2
Ba	40 à 80*	100	20	60	20	100	80
Cd	0,04	0,06	0,04	0,06	0,04	0,06	0,06
Cr	2,00	10	0,5	5	1	10	5
Cu	10	10	2	10	10	10	10
Hg	0,03	0,03	0,01	0,03	0,03	0,03	0,03
Mo	1,5	6	0,5	6	1	6	2
Ni	2	2	0,4	1,2	1,2	2	2
Pb	0,5	2	0,5	2	0,5	2	1
Sb	0,7	0,7	0,3 à 0,4*	0,7	0,7	0,7	<mark>0</mark> ,7
Se	1	1	0,4	1	1	1	1
Zn	15	15	4	12	15	15	15
Chloride (Cl-) ³⁾	3200 à 3600*	11000 à 14000*	800	2400	1800	11000	4700
Fluoride (F-) ³⁾	50	150	10	50	30	150	100
Sulphate (SO ₄ ²) ³⁾	5900 à 6000*	18000 à 20000*	1200	10000	3400	18000	6500
Phenolic compounds ⁶⁾	10	10	5	10	10	10	10
Soluble fraction							
DOC / Eluate	500	500	500	500	500	500	500
DOC / raw							
Σ BTEX							
Σ TEX ⁴⁾	25	25	25	25	25	10	25
Benzene (LOQ 0,01 et 0,05 mg/kg dm)) 0,2	0,2	0,02	0,2	0,06	0,02	0,2
PCB-7 compounds ⁷⁾	1	1	1	1	1	1	1
Petroleum hydrocarbons C10-C40	500	500	500	500	500	500	500
PAH compounds ^{s)}	30	30	30	30	30	30	30
Nitrates							
Cyanides							
Ве							
Со							
٧	2 à 3*	3	2	3	2	3	3
Asbestos							
Naphthalene	5	5	5	5	5	5	5
MAJ du 11.01.2022							
PRJ1700885 Green Foundry Life							

Leaching tests and identifying reuse options Summary table of documents submitted by partners :

Acceptance limit values for sand reuse in road engeneering (France)

Source	:	CTIF

0

LIFE17 ENV/FI/000173 Green Found Co-funded by LIFE program and CTIF « The publication reflects only the A

	France		Reuse options in road ingeneering	road ingeneering			
	Channels	Alternative material for type 1 use	Alternative material for type 2 use	Alternative material for type 3 use			
-	Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS			
	As	0,6	0,6	0,6			
	Ba	25	25	25			
	Cd	0,05	0,05	0,05			
	Cr	0,8	0,6	0,6			
	Cu	3	3	3			
	Hg	0,01	0,01	0,01			
	Mo	0,6	0,6	0,6			
	Ni	4	2	0,5			
	Pb	0,6	0,6	0,6			
	Sb	0,7	0,4	0,08			
	Se	0,1	0,1	0,1			
	Zn	20	20	5			
	Chloride (Cl-)	1000	1000	1000**			
	Fluoride (F-)	60	30	13			
	Sulphate (SO ₄ ²)	10000	5000	1300**			
	Phenolic compounds	2	2	1			
	Soluble fraction			5000**			
	DOC / Eluate	500	500	500			
	DOC / raw	30000 / 60000*	30000 / 60000*	30000 / 60000*			
	Σ ΒΤΕΧ	6	6	6			
	Σ ΤΕΧ						
	Benzene (LOQ 0,01 et 0,05 mg/kg dm)						
	PCB-7 compounds	1	1	1			
	Petroleum hydrocarbons C10-C40	500	500	500			
	PAH compounds	50	50	50			
-	Nitrates						
-	Cyanides						
-	Be						
dry Lll	Со						
ΊF	V						
Authc	Asbestos						
	Naphthalene			2			
-	MAJ du 11.01.2022	*A limit value of 60000 mg/kgDM ca	an be accepted, if the TOC/eluate v	alue does not exceed 500 mg/kgDM			
-	PRJ1700885 Green Foundry Life	**To be compliant, either the chlo	rides and sulphates VL or the solu	ble fraction VL must be respected			

<u>Results</u> : leaching tests performed on inorganic sand waste

➔ Not all inorganic sand waste is acceptable in inert waste disposal facilities for all countries

18

0

LIFE17 ENV/FI/000173 Green Fo Co-funded by LIFE program and « The publication reflects only the

		-	-	-	-	
	Waste sand samples	Waste sand CTIF IE	Waste sand INOTEC	Waste sand GEOPOL W37-20	Waste sand PEAK W37	
	Treatment	No	No	No	No	
	Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	
	As	0,01	0,11	0,03	0,02	
	Ba	< 0,05	0,07	< 0,05	< 0,05	
	Cd	< 0,002	< 0,002	< 0,002	< 0,002	
	Cr	< 0,01	0,07	0,03	0,01	
	Cu	< 0,02	0,05	0,04	0,02	
	Hg	< 0,0005	< 0,0005	< 0,0005	< 0,0005	
	Mo	< 0,02	0,03	< 0,02	< 0,02	
	Ni	< 0,03	< 0,03	< 0,03	< 0,03	
	Pb	< 0,02	< 0,02	0,02	< 0,02	
nd	Sb	< 0,02	0,067	< 0,02	< 0,02	
iu	Se	< 0,02	< 0,02	< 0,02	< 0,02	
ort	Zn	< 0,10	0,30	< 0,10	< 0,10	
ert	Chloride	< 10	< 10	< 10	23	
~	Fluoride	< 2	8,9	76	110	
S	Sulphate	< 10	76	13	20	
	Phenolic compounds	0,23	< 0,10	< 0,10	< 0,10	
	DOC (on eluate)	770	40	810	300	
	Soluble fraction	7000	4930	4160	3080	
	DOT (on raw)	< 2000	< 2000	< 2000	< 2000	
	BTEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10	
	TEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10	
	Benzene (LOQ 0,01 et 0,05 mg/kg dm)	< 0,02	< 0,02	< 0,02	< 0,02	
	PCB-7 (sum)	< 0,007	< 0,007	< 0,007	< 0,007	
	Petroleum hydrocarbons C10-C40	< 20	< 20	< 20	< 20	
	Sum 16 EPA-PAH, excl. LOQ	< 0,16	< 0,16	< 0,16	0,20	
	Nitrates					
	Cyanides					
	Ве					
en Fou	Co					
and C	V					
	asbestos					
only th	Napricialene	< 0,01	< 0,01	< 0,01	< 0,01	
	MAJ du 14.01.2022		led for all countries			
	PRJ1700885 Green Foundry Life	Exceeding the lim	it values for Italy			

Results : leaching tests carried out on the least well-cleaned sands

Mechanical technology

0

- Not all treated inorganic sand samples are acceptable in inert waste disposal facilities for all countries
- The mechanical technology is not effective in this case.

LIFE17 ENV/FI/000173 Green Foun Co-funded by LIFE program and CT « The publication reflects only the

	-				
	Waste sand samples	Waste sand CTIF IE	Waste sand INOTEC	Waste sand GEOPOL W37-20	Waste sand PEAK W37
	Treatment	Mechanical	Mechanical	Mechanical	Mechanical
	Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS
	As	0,02	0,09	0,03	0,03
	Ba	< 0,05	< 0,05	< 0,05	< 0,05
	Cd	< 0,002	< 0,002	< 0,002	0,002
	Cr	0,20	0,28	0,09	0,10
	Cu	0,02	0,02	< 0,02	< 0,02
	Hg	< 0,0005	< 0,0005	< 0,0005	< 0,0005
	Mo	< 0,02	0,04	< 0,02	0,02
nic 🛛	Ni	< 0,03	< 0,03	< 0,03	0,05
	Pb	< 0,02	< 0,02	< 0,02	< 0,02
	Sb	< 0,02	< 0,02	< 0,02	< 0,02
	Se	< 0,02	< 0,02	< 0,02	< 0,02
ste	Zn	< 0,10	< 0,10	< 0,10	< 0,10
	Chloride	< 10	< 10	11	14
	Fluoride	< 2	14	85	99
••	Sulphate	< 10	68	14	20
	Phenolic compounds	0,20	0,56	0,32	0,19
	DOC (on eluate)	590	45	700	240
	Soluble fraction	6830	2940	3830	2710
	DOT (on raw)	< 2000	< 2000	< 2000	< 2000
c+ivo	BTEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
ctive	TEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10
	Benzene (LOQ 0,01 et 0,05 mg/kg dm)	< 0,02	< 0,02	< 0,02	< 0,02
	PCB-7 (sum)	< 0,007	< 0,007	< 0,007	< 0,007
	Petroleum hydrocarbons C10-C40	< 20	< 20	< 20	< 20
	Sum 16 EPA-PAH, excl. LOQ	< 0,16	< 0,16	< 0,16	< 0,16
	Nitrates				
	Cyanides				
	Be				
n Foun	Со				
	V				
and CT	asbestos				
nly the	Naphthalene	< 0,01	< 0,01	< 0,01	< 0,01
	MAJ du 11.01.2022	Limit values exceed	ed for all countries		/
	PRJ1700885 Green Foundry Life	Exceeding the lim	it values for Italy		

<u>Results</u> : leaching tests carried out on the best cleaned sands

Hydromechanical process

0

→ Three samples of inorganic sand are acceptable in inert waste landfills in all countries, one sample is not acceptable in Italy and one sample is not acceptable in all countries, but with very low exceedances.
→ The hydromechanical technology is effective in this case.

LIFE17 ENV/FI/000173 Green Found Co-funded by LIFE program and CTIF « The publication reflects only the A

	Waste sand samples	Waste sand CTIF IE	Waste sand INOTEC	Waste sand GEOPOL W37-20	Waste sand PEAK W37	
	Treatment	Hydromechanical	Hydromechanical	Hydromechanical	Hydromechanical	
	Setting	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	Limit values mg/kgMS	
	As	< 0,01	0,02	< 0,01	< 0,01	
	Ba	< 0,05	< 0,05	< 0,05	< 0,05	
SS	Cd	< 0,002	< 0,002	0,003	< 0,002	
55	Cr	0,03	0,04	0,10	0,08	
rganic	Cu	0,02	< 0,02	0,02	< 0,02	
rganic	Hg	< 0,0005	< 0,0005	< 0,0005	< 0,0005	
nert	Mo	< 0,02	< 0,02	< 0,02	< 0,02	
ieit	Ni	< 0,03	< 0,03	< 0,03	< 0,03	
atriac	Pb	< 0,02	< 0,02	< 0,02	< 0,02	
ntries,	Sb	< 0,02	< 0,02	< 0,02	< 0,02	
	Se	< 0,02	< 0,02	< 0,02	< 0,02	
table	Zn	< 0,10	< 0,10	< 0,10	< 0,10	
	Chloride	< 10	< 10	< 10	< 10	
s not	Fluoride	< 2	2,3	4,1	7,1	
	Sulphate	< 10	< 10	< 10	< 10	
es, but	Phenolic compounds	0,19	0,46	1,10	0,10	
	DOC (on eluate)	28	34	36	29	
ces.	Soluble fraction	561	1100	< 500	< 500	
	DOT (on raw)	< 2000	< 2000	< 2000	< 2000	
_	BTEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10	
	TEX (sum)	< 0,10	< 0,10	< 0,10	< 0,10	
ו this	Benzene (LOQ 0,01 et 0,05 mg/kg dm)	< 0,02	< 0,02	< 0,02	< 0,02	
	PCB-7 (sum)	< 0,007	< 0,007	< 0,007	< 0,007	
_	Petroleum hydrocarbons C10-C40	< 20	< 20	< 20	< 20	
_	Sum 16 EPA-PAH, excl. LOQ	< 0,16	< 0,16	< 0,16	< 0,16	
_	Nitrates					
_	Cyanides					
_	Be					
een Foundr	Co					
	V					
m and CTIF	asbestos					
only the A	Naphthalene	< 0,01	< 0,01	< 0,01	< 0,01	
	MAJ du 11.01.2022	Limit values exceed	ed for all countries			
	PRJ1700885 Green Foundry Life	Exceeding the lim	it values for Italy			

If optimising the treatment of inorganic sands GEOPOL W37-20 and PEAK W37 by hydromechanics was not feasible to improve the results on the previous page, reuse options are however possible.

Regarding the inorganic sand waste and the mechanically treated sands, which are not acceptable in inert waste landfills with several limit values largely exceeded (fluoride, TOC/Eluate and soluble fraction), reuse options in geoconstruction (Finland) and road engineering (France) have been identified with higher acceptance limit values.

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF « The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

	-	-									
Process	Options	Accepted in center			Use of	the material in geo-co	ntruction (documen	t from Finlande)			
	Samples tested	waste inert	Roadway covered ¹⁾	Roadway paved ¹⁾	Field covered ¹⁾	Field paved ¹⁾	Embankment	Floor structure of industrial or storage building	Crushed stones and ash ²		
]	NOTEC	No	Yes	Yes	Yes	Ýes	Yes	Yes	Yes		
Untreated sands	CTIFIE	No	No	No	No	No	No	No	No		
]	GEOPOL W37-20	No	No	No	No	No	No	No	No	-	
	PEAK W37	No	No	Yes	No	No	No	Yes	No	-	
	INOTEC	No	Yes	Yes	No	Yes	Yes	Yes	Yes		
Mechanical processing	CTIFIE	No	No	No	No	No	No	No	No		
	GEOPOL W37-20	No	No	No	No	No	No	No	No	-	
	PEAK W37	No	No	Yes	No	No	No	Yes	No		
	INOTEC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Hydro mechanical processing		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
	GEOPOL W37-20	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
	PEAK W37	Yes except in Italie	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
MAJ du 12.01.2022											
Process	Options	Accepted in center	U	se of the material in ro	ad ingeneering (2019 C	erema guide France)		Results of reu	ise opti	ons inorgani	c sands
	Samples tested	waste inert	Alternative material	or type 1 use Altern	ative material for type 2	use Alternative mat	terial for type 3 use				
	INOTEC	No	Yes		Yes		Yes	In Géo-constr	uction		
Untreated sands	CTIFIE	No	Yes		Yes		Yes	^			
	GEOPOL W37-20	No	No		No		No	🛭 😉 9 Options for sa	nd waste II	NOTEC and PEAK	
	PEAK W37	No	No		No		No			offective (O entire	1
	INOTEC	No	Yes		Yes		No	😟 Mechanical trea	tment not	effective (8 options)
Mechanical processing	CTIFIE	No	Yes		Yes		Yes	😳 Hydromechanica	al treatmer	nt effective (all ontio	nns)
	GEOPOL W37-20	No	No		No		No			it chective (an optic	5115)
	PEAK W37	No	No		No		No	In Road ingen	eering		
	INOTEC	Yes	Yes		Yes		Yes		•		
Hydro mechanical processing		Yes	Yes		Yes		Yes	😂 6 Options for sai	nd waste IN	NOTEC and INOBAKE	
	GEOPOL W37-20	No	Yes		Yes		No				
	PEAK W37	Yes except in Italie	Yes		Yes		Yes	😟 Mechanical trea	tment hot	effective (5 options	1
MAJ du 12.01.2022								😦 Hydromechanica	al treatmer	nt effective (almost	all ontions)
* * *	LIFE17 FNV/FI/00	0173 Green Foun	drv LIFF							it chicking funnost	

0

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

General conclusions of the work carried by CTIF

Laboratory expertise has shown that :

- The use of an inorganic sand is possible for the production of small steel parts,
- The contents of carbon, sulphur, nitrogen, hydrogen and oxygen measured on the part samples did not reveal any major problem,

• The inorganic sand would apparently not have a major impact on the occurrence of defects (for the small steel parts tested in this project)

The treatment trials on waste inorganic sands and the technologies comparison has shown that :

- Hydromechanical and ultrasonic technologies are particularly effective in obtaining an inert sand waste after treatment, or in allowing the treated sand to be reused in foundry, geoconstruction or road engineering,
- The hydromechanical and ultrasonic treatment processes need to be tested on an industrial scale to verify whether these emerging technologies would be viable compared to solutions using conventional technologies (mechanical, thermal, thermomechanical, ...),
- It would be interesting to develop pilotes capable of treating 400 kg of sand per cycle to check the feasibility and determine the different ratios and the sand treatment cost in €/t, to compare the results obtained with those of conventional installations (with life cycle analysis and carbon impact calculation).

LIFE17 ENV/FI/000173 Green Foundry LIFE

Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

Thank you for your attention

Jean-Bernard VIROLLE Responsable Expérimentation & Essais Tel : +33 1 41 14 63 44

virolle@ctif.com CTIF, 44 Avenue de la Division Leclerc 92310 Sèvres - France

LIFE17 ENV/FI/000173 Green Foundry LIFE Co-funded by LIFE program and CTIF

« The publication reflects only the Author's view and the Agency/Commission is not responsible for any use that may be made of the information contained »

